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The treatment of classically forbidden electronic transitions in semiclassical
trajectory surface hopping calculations

Ahren W. Jasper, Michael D. Hack, and Donald G. Truhlara)

Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431
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A family of four weakly coupled electronically nonadiabatic bimolecular model photochemical
systems is presented. Fully converged quantum mechanical calculations with up to 25 269 basis
functions were performed for full-dimensional atom–diatom collisions to determine the accurate
scattering dynamics for each of the four systems. The quantum mechanical probabilities for
electronically nonadiabatic reaction and for nonreactive electronic deexcitation vary from 1021 to
1025. Tully’s fewest-switches~TFS! semiclassical trajectory surface-hopping method~also called
molecular dynamics with quantum transitions or MDQT! is tested against the accurate quantal
results. The nonadiabatic reaction and nonreactive deexcitation events are found to be highly
classically forbidden for these systems, which were specifically designed to model classically
forbidden electronic transitions~also called frustrated hops!. The TFS method is shown to
systematically overestimate the nonadiabatic transition probabilities due to the high occurrence of
frustrated hops. In order to better understand this problem and learn how to best minimize the errors,
we test several variants of the TFS method on the four new weakly coupled systems and also on a
set of three more strongly coupled model systems that have been presented previously. The methods
tested here differ from one another in their treatment of the classical trajectory during and after a
frustrated hopping event. During the hopping event we find that using a rotated hopping vector
results in the best agreement of semiclassical and quantal results for the nonadiabatic transition
probabilities. After the hopping event, we find that ignoring frustrated hops instead of reversing the
momentum along the nonadiabatic coupling vector results in the best agreement with the accurate
quantum results for the final vibrational and rotational moments. We also test the use of
symmetrized probabilities in the equations for the TFS hopping probabilities. These methods
systematically lead to increased error for systems with weakly coupled electronic states unless the
hopping probabilities are symmetrized according to the electronic state populations. ©2001
American Institute of Physics.@DOI: 10.1063/1.1377891#
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I. INTRODUCTION

Semiclassical methods for calculating the probabilit
of electronically nonadiabatic events have a long histo1

and a variety of multistate approximations have been de
oped and reviewed.2–6 An important recent development
the use of converged quantum mechanical dynamics calc
tions for full-dimensional atom–molecule collisions to te
the semiclassical theories.7–17

One may classify electronically nonadiabatic systems
various ways, the simplest of which recognizes stron
coupled and weakly coupled systems. The former are ep
mized by surface intersections and localized, narrow
avoided crossings, the so-called Landau–Zener–Te
case,1,2,4,18and the latter are epitomized by wide regions
coupling, often of weakly coupled but nearly parallel pote
tial functions, the so-called Rosen–Zener–Demk
case.1,2,4,19,20The present article is primarily concerned wi
developing and testing semiclassical methods for ato
molecule collisions in the latter, less studied case. In part
lar we focus on the trajectory surface hopping21–36 ~TSH!

a!Electronic mail: truhlar@umn.edu
1800021-9606/2001/115(4)/1804/13/$18.00

Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
s
,
l-

la-
t

n
y
o-
y
er
f
-
v

–
-

method and specifically on Tully’s fewest-switches~TFS!
algorithm6,30 for surface hopping.~TFS is also called mo-
lecular dynamics with quantum transitions or MDQT.! Sur-
face hopping is anad hocaddition to classical mechanics i
which trajectories instantaneously switch electronic sta
i.e., the potential energy function that determines the nuc
motion is discontinuous. The TFS algorithm is an afforda
and often accurate method7–14 despite the apparent shor
coming of using sudden surface switches~hops! to describe
the nonadiabatic flow of probability in electronic state spa

There are two important decisions that must be ma
when implementing surface hopping:~1! When a surface hop
to a different electronic state is called for and is classica
allowed, how should the kinetic energy be adjusted so a
conserve total energy and~2! what is the best way to trea
hopping attempts that are classically forbidden? The fi
question has a satisfactory answer. The direction al
which the nuclear momentum is adjusted is represented
unit vector called the hopping vector, and it has be
shown9,11 that using the direction of the nonadiabatic co
pling vector~instead of the gradient of the electronic ener
gap, for example! as the hopping vector and adjusting th
4 © 2001 American Institute of Physics
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nuclear momentum such that total energy is conserved
sults in the best agreement with quantum mechanical ca
lations. This procedure has also been justifi
theoretically.22,28,37

Our present study will concentrate on the second qu
tion. Hopping attempts that are classically forbidden
called frustrated hops, and their treatment has attracted s
attention recently,12,14,34–36,38,39but a satisfactory procedur
has not yet been obtained. It has been suggested that
trated hops should be ignored, and this method has b
applied with some success.34 It has also been argued23,25,38

that when a trajectory experiences a frustrated hop,
nuclear momentum should be reversed along the hop
vector, as if the trajectory experiences a repulsive wall n
mal to the hopping vector as it attempts and fails to hop t
higher-energy electronic state. In past works,7,9–15,27 our
group has generally followed the procedure used by B
and Truhlar;27 this involves a combination of these two a
proaches, i.e., energetically forbidden frustrated hops are
nored while energetically allowed but momentum forbidd
frustrated hops are reflected.

It has been noted35 that one may distinguish two possib
reasons for the occurrence of classically forbidden hopp
attempts. The first possible reason is that the trajectory
face hopping algorithm is somehow inadequate and sho
not be predicting transitions where they cannot occur. T
argument is strengthened by studies that show surface
ping methods to be more accurate when frustrated hops
ignored.34 Motivated by this reasoning, a variant of the TF
method called the MDQT* method has recently bee
proposed35,36 that eliminates hopping attempts in classica
forbidden regions by using a symmetrized velocity in t
equations for the electronic state populations. The sec
possible reason for frustrated hops is that the trajec
shouldhop to the energetically forbidden state, but classi
trajectories are limited by the conservation of total ener
whereas quantum mechanical particles can borrow en
for a finite time according to the uncertainty principle. Th
idea suggests that the method for adjusting the nuclear
netic energy during a hopping attempt is somehow defici
Our group has recently proposed a method for redistribu
the nuclear kinetic energy in order to allow some classica
forbidden hops,12,14 although this method generally led t
increased semiclassical errors for the cases to which it
applied.

In a recent work,13 two semiclassical methods wer
tested against accurate quantum mechanical calculation
the weakly coupled BrH2 system, which is a reactive Rosen
Zener–Demkov case. The results show that despite diffic
in achieving numerical convergence, the TFS method is m
accurate than the semiclassical Ehrenfest method40,41 for this
case. In the present work we test semiclassical methods
family of four weakly coupled three-atom systems called
YRH systems with features qualitatively similar to the BrH2

system. The family of systems has members with quan
mechanical nonadiabatic transition probabilities vary
from ;1021 to ;1025, and it was specifically designed t
provide a more systematic test of nonadiabatic semiclass
trajectory methods than the previously described BrH2 sys-
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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tem. Using the TFS algorithm we find for the model syste
studied here that hopping to the ground state is rare, but o
the system is in the ground state, a large percentage~25%–
80%! of trajectories experience at least one frustrated h
ping attempt. This results in a breakdown of the se
consistency of the TFS algorithm, i.e., the fraction
trajectories in each state does not correspond to the distr
tion demanded by the fewest-switches algorithm.

Due to the high percentage of trajectories affected
frustrated hops and the low probability of multiple hoppin
trajectories, the new YRH model systems presented here
vide good test cases for studying the treatment of frustra
hops. We use the family of YRH systems along with a p
viously described15 set of more strongly coupled model sy
tems, called MXH systems, to explore several variants of
TFS method which differ in their treatment of frustrated ho
ping. Section II presents the model YRH systems, and S
III presents the accurate quantum mechanical dynamics
culations for these systems. Section IV discusses the s
classical algorithms, and Secs. V and VI present and disc
the results of the semiclassical methods applied to the m
YRH and MXH systems.

II. MODEL POTENTIAL ENERGY MATRICES
AND SCATTERING CONDITIONS

In order to design a simple and systematic set of t
cases for studying the treatment of surface hops without
terference from competing effects, a family of model thre
body potential energy matrices~PEMs! with weakly coupled
electronic states was created. Each PEM models the nona
batic scattering process of an electronically excited mode
atom interacting with a diatomic RH molecule initially i
some discrete vibrational and rotational quantum state (n, j ):

Y* 1RH~n, j !→H Y1RH~n9, j 9! ~R1a!

R1YH~n8, j 8!, ~R1b!

where the asterisk indicates electronic excitation, and
primes on the quantum numbers indicate that these quan
are not conserved. There is some probabilityPR that the
system will react to form the YH diatomic product~R1b! and
some probabilityPQ that the system will quench, typically
accompanied by vibrational and rotational excitation of t
RH diatom~R1a!. The sum of these probabilities is the tot
nonadiabatic probabilityPN for the system to undergo a
electronic transition to the ground state during the scatte
event.

The electronic excitation energy of the Y atom is tak
as 0.36 eV, and the equilibrium bond energies of the RH
YH molecules are 3.9 and 4.3 eV, respectively. The z
point energies of RH and YH are 0.18 and 0.19 eV, resp
tively. The mass combination for all calculations was chos
to be 10 and 6 amu for the Y and R atoms, respectively. T
H atom has the mass of hydrogen, i.e., 1.007 83 amu. T
mass combination provides an interesting and challeng
test case for semiclassical methods. The system is mod
in the diabatic representation and has qualitative feature
the Rosen–Zener–Demkov type,1,2,19,20i.e., the diagonal di-
abatic potential energy surfacesU11 andU22 never cross and
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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are nearly parallel in the entrance valley. The diabatic c
pling U12 is localized in the interaction region. The ener
gap between the diabatic surfaces is roughly equal to 0.36
throughout the strong interaction region. Details of the fu
tional forms and the parameters used in the analytic re
sentation of the family of YRH surfaces are available
supporting information.42

Each member of the family of YRH matrices diffe
from the others only in the value of the maximum diaba
couplingU12

max. Four potential matrices with values ofU12
max

50.20, 0.10, 0.03, and 0.01 eV are discussed in this pa
The PEMs in the series will be referred to individually
YRH(U12

max/eV), where U12
max/eV is U12

max in eV, e.g.,
YRH~0.20!. A plot of the diabatic matrix elementsU11, U12,
and U22 along an approximate reaction path ofU11 in the
internuclear bond distance coordinate system is given
YRH~0.10! in Fig. 1. Also shown in Fig. 1 are the two dif
ferent total scattering energies~1.10 and 1.02 eV! used for
the calculations reported in this paper and the energie
some asymptotic rovibrational states.

Adiabatic potential energy surfaces were obtained by
agonalizing the diabatic PEM. In the adiabatic representa
the scalar product of the velocity and the nonadiabatic c
pling vectord ~due to the nuclear linear momentum! couples
the nuclear and electronic degrees of freedom.6,24 Using the
Hellman–Feynman theorem, we can calculated without ap-
proximation from the diabatic matrix elements and th
gradients.24 Figure 2 contains contour plots of the upper a
lower adiabatic surfaces and the magnitude ofd. Also shown
are the magnitudes of the three components ofd, expressed
in the reactant-Jacobi coordinate system, whereS is the mag-

FIG. 1. Values of the diabatic potential energy matrix elementsU11 , U12 ,
andU22 plotted as a function of an approximate reaction coordinate for
ground state reaction Y1RH→R1YH at a fixed YRH bond angle of 120°
The U12 curve shown corresponds to the YRH~0.10! PEM. Also shown are
the two scattering energies used in this study, as well as the energi
several asymptotic rovibrational states (x,n, j ), wherex is the electronic
quantum number,n is the vibrational quantum number, andj is the rotational
quantum number.
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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nitude of the vectorS that points from Y to the center-of
mass of RH,s is the magnitude of the vectors that points
from R to H, andx is the angle betweenS ands.

Initial scattering conditions may be labeled by the sho
hand (E/eV,j ) whereE/eV is the total energy in eV andj is
the initial rotational quantum number; in all cases the init
electronic quantum number is 2~which corresponds to the
excited electronic state!, the initial vibrational quantum num
ber is 0, and the total angular momentum is 0. We cons
three cases for the YRH systems:~1.10, 0!, ~1.10, 6!, and
~1.02, 0!. Note that the initial total internal energy for a co
lision of Y* with RH(n50,j 50) is 0.94 eV and that for
RH(n50,j 56) is 1.02 eV.

Although this paper focuses on the model YRH system
we also consider the previously described15 set of MXH
model PEMs. These systems are more strongly cou
ed than the YRH systems; the quantum mechan
nonadiabatic transition probabilities vary from 0.15 to 0.4
For these systems we consider the (mM ,mX ,mH)
5(6.046 95,2.015 65,1.007 83 amu) mass combination
the ~1.10, 0! set of initial conditions. We consider all thre

e

of

FIG. 2. Contour plots of the adiabatic energies and the nonadiabatic
pling vector, plotted as functions of the translational Jacobi coordinatS,
and the diatomic Jacobi coordinates, with the Jacobi anglex5120°. ~a!
Lower-energy adiabatic potential energy surface.~b! Higher-energy adia-
batic potential energy surface.~c! Magnitude of the nonadiabatic couplin
vector udu. ~d! Magnitude of the component ofd that lies in the direction of
the diatomic Jacobi coordinate.~e! Magnitude of the component ofd that
lies in the direction of the translational Jacobi coordinate.~f! Magnitude of
the component ofd that lies in the direction of the Jacobi angle. For pan
~a! and ~b!, the lowest energy contours are at 0.2 and 0.8 eV, respectiv
and the contour spacing is 0.2 eV. For panels~c!, ~d!, and ~f! the contour
spacing is 1024a0

21. For panel~e! the contour spacing is 1025a0
21.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sets of MXH surfaces which were previously15 labeled SB,
SL, and WL. See Ref. 15 for a complete description of
MXH surfaces.

III. QUANTUM DYNAMICS FOR THE MODEL YRH
SYSTEMS

Fully converged, six-dimensional~three vibrations and
three rotations! quantum mechanical scattering calculatio
were performed on each of the four YRH potential ene
matrices using the outgoing wave variational princip
~OWVP!,43–46 as implemented in version 18.8 of theVP

computer code.47 The OWVP is a linear algebraic variation
principle48 employing bothL2 and non-L2 basis functions.
The calculations reported here employ a basis of asymp
eigenstate functions multiplied by half-integrated Gree
functions49 for energetically open channels and by Gauss
functions for energetically closed channels. A channel is
fined as a unique set of the asymptotic quantum numb
including: the molecular arrangement, the diabatic electro
quantum number, the vibrational quantum number of the
atomic molecule, and the rotational quantum number of
diatomic molecule.~For nonzero total angular momentumJ
one could also include the relative translational orbital an
lar momentuml , but for J50, we havel equal toj, j 8, or
j 9.! All of the rotational-state channels for a given vibr
tional state, electronic state, and molecular arrangement w
coupled to each other, whereas channels with different vib
tional states, electronic states, or molecular arrangem
were uncoupled when solving the finite difference probl
to obtain the basis functions for the variational step. T
surfaces were fully coupled during the variational step of
calculations. See Refs. 43–46 for details.

We define our potential energy matrices and perform
quantum mechanical calculations in the diabatic represe
tion with zero nuclear momentum coupling. In such a mod
there is a one-to-one transformation between diabatic
adiabatic representations, and the quantum mechanica
sults are independent of which one is chosen.

A list of the OWVP basis set parameters can be found
the supporting information.42 Basis set I contains 18 934 ba
sis functions and was used to calculate all of the observa
reported in this paper. The larger basis set, basis set II
used to check the convergence of basis set I for
YRH~0.20! and YRH~0.01! systems at several scattering e
ergies. The number of basis functions in the converge
check is 25 269. In these convergence checks, the stat
state transition probabilities out of the Y*1RH(n50,j 50)
~for E51.10 and 1.02 eV! and the Y*1RH(n50,j 56) ~for
E51.10 eV! initial states are converged to better than 1%
greater than 95% of the energetically accessible final ch
nels, with the remaining state-to-state transition probabili
~high- j 8 or j 9 channels! converged to better than 5%. For a
of the state-to-state transition probabilities~including all ini-
tial states!, 94% of the transition probabilities~with an aver-
age value of 0.013! are converged to better then 1%, 3%
the transition probabilities~with an average value of 4.5
31025! are converged to better than 5%, and the remain
3% of the transition probabilities have an average value
2.131028. The first moments~i.e., averages! of the vibra-
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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tional and rotational quantum numbers and the reaction
quenching probabilities are converged to better than 1%

Quantum mechanical observables often exhibit an os
latory structure as functions of scattering energy. In contr
semiclassical properties often do not show these oscillatio
and in such cases it is most appropriate to compare them
energy-averaged quantum results. In the present case
checked that the semiclassical results depend only slowly
energy. It is therefore desirable to compare the semiclass
results obtained at a single scattering energy to the ave
quantum mechanical value obtained over a range of energ
Quantum mechanical calculations were performed at se
energies at and around the nominal scattering energies42 and
averaged to obtain values that are used to compute the e
reported in Tables II and III. In most cases, the values
tained by averaging are similar to the values obtained at
nominal scattering energy.

IV. SEMICLASSICAL TRAJECTORY CALCULATIONS

Semiclassical trajectory surface hopping calculatio
were carried out using version 6.0 of theNAT computer
code50 ~which is a generalized version of our previousTSH

code!. For all the calculations reported in this work, the ho
ping vector was taken to be a unit vector in the direction
the nonadiabatic coupling vector, i.e.,

h5
d

udu
. ~1!

The initial coordinates and momenta for each trajectory
the ensemble were selected as described previously.11,25

The final reaction and quenching probabilities~PR and
PQ! were determined by counting trajectories, and the fi
rotational and vibrational moments~^v8& and ^ j 8& for reac-
tive trajectories, and̂v9& and ^ j 9& for quenching trajecto-
ries! were calculated according to the energy-nonconserv
histogram~ENH! analysis scheme.11 Vibrational and rota-
tional moments were also calculated using the ener
nonconserving quadratic smooth sampling11,51~ENQSS!, and
the energy-nonconserving linear smooth sampling~ENLSS!
analysis schemes. We also tested an energy-conserving~EC!
variant11 of the three sampling schemes, i.e., ECH, ECQS
and ECLSS. The EC methods result in systematica
slightly lower rotational and vibrational moments and lead
increased semiclassical errors. The results from the
analysis schemes typically differ from each other by le
than 2%. For this reason we report only one set of resu
and we chose the ENH result, because it has a well-defi
statistical uncertainty estimate.25

IV.A. Treatment of the nuclear momentum
at a frustrated hop

During a surface hopping event, a trajectory attempts
hop from the occupied electronic state to a target electro
state. A hopping attempt is classically forbidden if it is n
possible to adjust the nuclear momenta along the hopp
vector h, such that total energy is conserved. One may f
ther divide classically forbidden hops into three categorie12

namely: energy-, angular-momentum-, and line
momentum-forbidden hops. Energy-forbidden hops oc
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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when the target state has an energy greater than the
energy of the system. The distinction between the other
types of frustrated hops depends on dividing the energy
vibrational and rotational contributions. A hop is angula
momentum-forbidden when the hop is not energy-forbidd
but the vibrational energy is less than the energy of the ta
state, i.e., the nuclear momentum cannot be adjusted in
direction such that total angular momentum is conserved
linear-momentum-forbidden hop occurs when there is su
cient energy in vibrational modes to exist on the target s
face, but there is insufficient energy along the hopping vec
h to allow for the energy adjustment. We note that for s
tems where the total angular momentumJ is equal to zero,
there is no energy in the rotation of the system and angu
momentum-forbidden hops cannot occur. For the calcu
tions reported here, the orbital angular momentuml class is
selected classically from 0<l class<\ for the j 50 state and
from 6\<l class<7\ for the j 56 state, and therefore th
total angular momentumJ can have values that range fro
2 1

2\,J, 1
2\. The occurrence of angular-momentum

forbidden hops, however, is much less than 0.01% of
total number of attempted hops, and the treatment of angu
momentum-forbidden~but otherwise allowed! hops will not
be considered in this paper.

Several variants of the TFS method which differ in th
treatment of frustrated hops will be tested. We will refer
the TFS variants as TFS-~Prot-L, Prot-E!, where Prot-L de-
notes the protocol for linear-momentum-forbidden hops, a
Prot-E denotes the protocol for energy-forbidden hops. T
allowed values for Prot-L and Prot-E will be introduced a
defined as needed.

In recent work,7,9–15 following an older protocol,27 our
group has used an implementation of the TFS method
which momentum- and energy-forbidden hops are trea
differently. When a trajectory experiences a line
momentum-forbidden hop, the nuclear momentum along
hopping vectorh is reversed, whereas when a trajectory e
periences an energy-forbidden hop, the attempted hop is
nored. We will refer to this method as the TFS-~2,1!
method, where the ‘‘2’’ indicates that the nuclear momen
tum is reversed alongh, and the ‘‘1’’ indicates that the
nuclear momentum is not reversed alongh. In assessing
whether this is the best procedure, we note that inters
coupling in the adiabatic representation is proportional to
scalar product of the velocity of the trajectory andd, and
therefore it is independent of the components of the velo
orthogonal tod. We also note that it is the energy in th
modes orthogonal tod that differentiates the two differen
types of forbidden hops. These considerations motivat
method that treats frustrated hops consistently. In particu
along with the TFS-~2,1! method, we test two alternat
schemes, namely the TFS-~1,1! and the TFS-~2,2! meth-
ods. In the TFS-~2,2! method, all frustrated hops are re
flected alongh. The TFS-~2,2! method was the metho
used in the original implementation of the TFS method.30,38

In the TFS-~1, 1! method, all frustrated hops are ignore
The TFS-~1, 1! method has also been suggested and te
in the literature.34

We have previously described a method for remov
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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linear-momentum-frustrated hops by rotating the hopp
vector h within the zero angular momentum region of co
figuration space by the smallest amount that allows
hopping.12 In the present work we call this the TFS-~R, 1!
method, where the ‘‘R’’ indicates that linear-momentum
forbidden hops are allowed using a rotated hopping vec
Rotating the hopping vector cannot be used to allow ener
forbidden hops, and when an energy-forbidden hop is
tempted, it is ignored.

IV.B. Symmetrized-speed and symmetrized-coupling
methods

The four variants of the TFS method discussed in
previous section, TFS-~2,1!, TFS-~2,2!, TFS-~1,1!, and
TFS-~R,1!, differ in their treatment of the classical trajecto
after a hopping attempt that is generated by the TFS a
rithm turns out to be frustrated. An alternate approach is
modify the TFS algorithm to eliminate hopping attempts
regions where hops are classically forbidden. For a trajec
is following the pathR(t), we can write the electronic wav
function for a two-state system as

C~ t !5c1~ t !f1@R~ t !#1c2~ t !f2@R~ t !#, ~2!

wheref1 andf2 are the adiabatic electronic basis functio
for the ground state and excited state, respectively, andc1

andc2 are expansion coefficients that depend on the timt.
The electronic state population of statex at timet is given by

nx~ t !5ucx~ t !u2. ~3!

The TFS probability of hopping from the occupied electron
statek to the target statel is given by30

gkl5maxS 0,
bklDt

nk
D , ~4!

where

bkl522 Re~akl* Ṙk"d!, ~5!

Dt is the change in time between hopping checks,akl is the
electronic state coherenceckcl* , andṘk is the velocity of the
system on the occupied surfacek. When a hop occurs, the
internal energy is adjusted along theh vector, such that en-
ergy is conserved, i.e., according to the following equatio

Th~k!1E~k!5Th~ l !1E~ l !, ~6!

whereTh(k) is the kinetic energy associated with the com
ponent of the nuclear linear momentum in theh direction
when the trajectory is on surfacek, andE(k) is the potential
energy of surfacek. As mentioned previously, a hopping a
tempt is frustrated if the energy of the occupied statek is less
than the energy of the target statel, and the kinetic energy
along h before the hopping attempt is less than the ene
gap between the two potential energy surfaces, i.e., if

Th~k!,E~ l !2E~k!. ~7!

A method called the MDQT* method35,36 has been pro-
posed for the case where Eq.~4! is used, such that one use
a geometrically symmetrized speed~GS! to eliminate hop-
ping attempts in regions where Eq.~7! is true. This method
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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was justified35 by noting that while a TFS classical trajecto
exists on only one potential energy surface, a quantum
chanical wave function has some probability density on b
electronic surfaces, and hence the magnitude of the velo
that appears in the electronic dynamics through Eq.~5! is
replaced by a speed more representative of the motion
both surfaces. We test this method along with seven varia
All eight methods eliminate frustrated hopping by rewritin
Eq. ~5! as

bkl8 522 Re@akl* F~Ṙk ,Ṙl ,d!#, ~8!

where the exact form ofF(Ṙk ,Ṙl ,d) depends on the
method. ~Note that akl is also a function ofṘk"d, and
F(Ṙk ,Ṙl ,d) is used in place ofṘk"d when calculatingakl

for the eight new methods presented here.! In the MDQT*
method, which we will also call the GS~1/2! method,

FGS~1/2!~Ṙk ,Ṙl ,d!5uṘku1/2uṘl u1/2
Ṙk"d

uṘku
, ~9!

where the velocity of the trajectory in the currently occupi
electronic state isṘk . The value ofuṘl u must be computed a
each time step, whereṘl is the velocity that the trajectory
would have if it were to hop to the other electronic surfa
Whenever a hopping attempt would be frustrated,Ṙl does
not exist, andF(Ṙk ,Ṙl ,d) is set to zero. All frustrated hop
are eliminated in this method. The hopping probability do
not go smoothly to zero as hopping becomes frustrated
causeṘl can have nonzero components orthogonal tod as
hopping becomes frustrated.

We also note that in the GS~1/2! method,35,36 the com-
ponents of the velocity orthogonal tod contribute to the
electronic dynamics. This might be considered unphys
since, as previously mentioned, these components do
couple the adiabatic electronic states in the original equa
for bkl given in Eq.~5!. An alternate prescription that elimi
nates frustrated hopping with a smoothly vanishing hopp
probability function is the geometrically symmetrized co
pling scheme, GC~1/2!. In this formulation,

FGC~1/2!~Ṙk ,Ṙl ,d!5uṘk"du1/2uṘl "du1/2
Ṙk"d

uṘk"du
. ~10!

Using Eq. ~10!, the hopping probability goes smoothly t
zero as hopping becomes frustrated. The GC~1/2! method
symmetrizes only the component of the velocity which
alongd; the components of the velocity orthogonal tod do
not contribute to the electronic dynamics, which is consist
with Eq. ~5!.

For completeness we also test the AS~1/2! and AC~1/2!
methods, in which the speed or the coupling is arithmetica
symmetrized. Specifically,

FAS~1/2!~Ṙk ,Ṙl ,d!5~ 1
2uṘku1

1
2uṘl u!

Ṙk"d

uṘku
, ~11!
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FAC~1/2!~Ṙk ,Ṙl ,d!5~ 1
2uṘk"du1 1

2uṘl "du!
Ṙk"d

uṘk"du
. ~12!

The symmetrized coupling equations for the GS~1/2!,
GC~1/2!, AS~1/2!, and AC~1/2! methods defined in Eqs.~9!–
~12! weight the speed or coupling of both surfaces equally
general, the wave packet is not evenly distributed betw
the two electronic states. In order to incorporate this into
dynamics we define the method GC(nx) by rewriting Eq.
~10! as

FGC~nx!~Ṙk ,Ṙl ,d!5uṘk"dunkuṘl "dunl
Ṙk"d

uṘk"du
, ~13!

wherenx is the electronic state population of statex. With
this form ofFGC(nx), the coupling terms that arise from eac
electronic surface are weighted according to their state po
lations nx instead of arbitrarily by 1

2. We also test the
GS(nx), AS(nx), and AC(nx) methods which are defined b
replacing the1

2 weighting factors that appear in Eqs.~9!, ~11!,
and ~12!, respectively, bynx , specifically:

FGS~nx!~Ṙk ,Ṙl ,d!5uṘkunkuṘl unl
Ṙk"d

uṘku
, ~14!

FAS~nx!~Ṙk ,Ṙl ,d!5~nkuṘku1nl uṘl u!
Ṙk"d

uṘku
, ~15!

FAC~nx!~Ṙk ,Ṙl ,d!5~nkuṘk"du1nl uṘl "du!
Ṙk"d

uṘk"du
. ~16!

IV.C. Absorbing frustrated hops

It is interesting to calculate the reaction and quench
probabilities that would be obtained by the TFS method
somehow frustrated trajectories were provided with the n
essary energy to hop. We can obtain a lower limit on the to
nonadiabatic probabilityPN by reanalyzing the data from
TFS calculation and using only those trajectories that do
experience a frustrated hop to calculate the final probabili
and moments. This method can be thought of as the re
obtained by absorbing trajectories with frustrated hops to
upper electronic state and is called the AFH result. This
sult provides a lower limit on the TFS total nonadiaba
probability PN because the possibility that some of the re
signed trajectories may hop back down to the lower stat
not included. Note that the TFS-AFH method cannot be u
to compute the moments on the upper surface, but we do
consider such moments in the present paper.

IV.D. Semiclassical Ehrenfest method

Although our main goal here is to determine the op
mum procedure for trajectory surface hopping calculatio
when the surfaces are weakly coupled, we also carried
calculations using the semiclassical Ehrenfest version39,40 of
the time-dependent self-consistent-field method. The calc
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Reaction, quenching, and total nonadiabatic transition probabilities, final vibrational and rotational moments, and product branching ratios for the
YRH~0.20! system and the~1.10, 0! initial conditions.

Method PR ^n8& ^ j 8& PQ ^n9& ^ j 9& FR PN

Quantuma 0.010 0.83 12.4 0.047 0.90 3.35 0.176 0.057
Average quantumb 0.012 0.93 12.1 0.045 0.90 3.30 0.213 0.057
TFS-~2,1! 0.034 0.77 13.1 0.068 0.47 5.57 0.333 0.102
TFS-AFH 0.007 0.81 13.9 0.020 0.35 7.92 0.256 0.027
TFS-~1,1! 0.035 0.90 12.7 0.066 0.65 5.12 0.349 0.101
TFS-~2,2! 0.027 0.81 12.7 0.073 0.45 5.77 0.272 0.101
TFS-~R,1! 0.020 0.84 13.5 0.035 0.56 5.95 0.361 0.055
GS~1/2!wMDQT* 0.057 0.85 13.1 0.109 0.62 5.67 0.342 0.166
GC~1/2! 0.097 0.95 12.3 0.165 0.66 5.41 0.369 0.262
AS~1/2! 0.133 0.97 12.2 0.234 0.66 5.22 0.362 0.367
AC~1/2! 0.062 0.86 13.0 0.116 0.65 5.14 0.349 0.178
GS(nx) 0.038 0.87 12.8 0.067 0.62 5.74 0.359 0.105
GC(nx) 0.040 0.89 12.8 0.075 0.63 5.61 0.346 0.115
AS(nx) 0.040 0.86 12.9 0.070 0.59 6.03 0.364 0.110
AC(nx) 0.035 0.85 13.0 0.063 0.59 5.90 0.360 0.098
TFS-~2,1!-di 0.331 0.54 12.5 0.269 0.40 5.50 0.552 0.600
TFS-AFH-di 0.001 1.00 14.0 0.015 0.14 5.26 0.075 0.016

aQuantum mechanical result for the scattering energy 1.10 eV.
bAverage of seven quantum mechanical calculations performed at the following scattering energies: 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, and 1.13 e
es
ud
dix

o

te

he

s

a

a
no
th

d to
mi-
for

ob-
b-
ur
ere
ga-

-
al

I.
tions show that the Ehrenfest method fails badly for th
systems, and this finding further motivates the present st
The Ehrenfest results are discussed briefly in the appen

V. RESULTS

We tested all of the methods mentioned in this paper
the YRH~0.2! PEM at the~1.10, 0! set of initial conditions,
and the results are summarized in Table I. We further tes
the TFS-~2, 1!, TFS-~1, 1!, TFS-~2, 2!, TFS-~R, 1!, and
GC(nx) methods on all four of the YRH PEMs at each of t
three different sets of initial conditions~1.10, 0!, ~1.10, 6!,
and ~1.02, 0! and on the set of three model MXH system
~SB, SL, and WL! for the ~1.10, 0! set of initial conditions.
The detailed results of all of the semiclassical trajectory c
culations can be found in the supporting information.42

Unless one single semiclassical method is best for
observables for all cases, the choice of ‘‘best method’’ is
unique. Nevertheless, we will present some statistics
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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will help us to determine a reasonable~if not unique! answer
to the question of which method is the most accurate an
quantitatively compare the overall accuracy of several se
classical methods. First, unsigned errors were computed
each vibrational and rotational moment. The quenching pr
abilities, reaction probabilities, and total nonadiabatic pro
abilities vary by several orders of magnitude over the fo
YRH PEMs, and therefore the errors in these quantities w
calculated using logarithms, in particular the unsigned lo
rithmic error in log10 PX is given by

UE~ log10 PX!5u log10PX
semiclassical2 log10 PX

quantalu, ~17!

whereX5 ‘ ‘ R, ’ ’ ‘‘ Q,’’ or ‘‘ N.’’ We also consider the error in
the reactive branching ratioFR which is defined as the ratio
of the reaction probabilityPR to the total nonadiabatic prob
ability PN . The unsigned errors for all of the semiclassic
methods discussed in this paper for the YRH~0.20! PEM and
the ~1.10, 0! set of initial conditions are shown in Table I
n the table.
TABLE II. Unsigned errors in the semiclassical methods for the YRH~0.20! system and the~1.10, 0! initial conditions.a

Method log10PR ^n8& ^ j 8& log10PQ ^n9& ( j 9) FR log10PN Overallb

TFS-~2,1! 0.45 0.16 0.99 0.18 0.43 2.27 0.12 0.25 0.62
TFS-~1,1! 0.46 0.04 0.66 0.16 0.25 1.81 0.14 0.24 0.44
TFS-~2,2! 0.35 0.12 0.61 0.21 0.45 2.47 0.06 0.24 0.52
TFS-~R,1! 0.21 0.10 1.44 0.11 0.34 2.64 0.15 0.02 0.54
GS~1/2!wMDQT* 0.67 0.08 1.01 0.38 0.28 2.37 0.13 0.46 0.64
GC~1/2! 0.90 0.01 0.22 0.56 0.24 2.11 0.16 0.66 0.61
AS~1/2! 0.71 0.08 0.95 0.41 0.25 1.84 0.14 0.49 0.64
AC~1/2! 1.04 0.03 0.07 0.71 0.24 1.91 0.15 0.81 0.68
GS(nx) 0.49 0.06 0.71 0.17 0.28 2.44 0.15 0.26 0.50
GC(nx) 0.51 0.05 0.75 0.22 0.27 2.30 0.13 0.30 0.50
AS(nx) 0.46 0.08 0.87 0.14 0.31 2.60 0.15 0.23 0.53
AC(nx) 0.52 0.07 0.81 0.19 0.31 2.73 0.15 0.28 0.55
TFS-~2,1!-di 1.43 0.40 0.40 0.77 0.50 2.20 0.34 1.02 1.28

aNumbers in bold indicate the method with the lowest error for each column. See text for a complete discussion.
bTo obtain the overall mean error, each column was normalized to have a mean value of 0.62, which is the average value of all unsigned errors i
Then the eight columns for a given method were averaged.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Mean unsigned errors in the semiclassical methods averaged over 12 YRH cases and three MXH cases.a

System Method log10PR ^n8& ^ j 8& log10PQ ^n9& ^ j 9& FR log10PN Overallb

YRHc TFS-~2,1! 0.36 0.25 1.4 0.11 0.36 2.2 0.11 0.13 0.59
TFS-~1,1! 0.36 0.15 1.3 0.10 0.22 1.9 0.11 0.11 0.47
TFS-~2,2! 0.29 0.25 1.4 0.13 0.38 2.2 0.07 0.13 0.58
TFS-~R,1! 0.30 0.15 1.5 0.13 0.25 2.1 0.13 0.09 0.51
GC(nx) 0.37 0.18 1.5 0.13 0.23 2.1 0.11 0.15 0.54

MXHd TFS-~2,1! 0.37 0.06 1.2 0.09 0.06 0.43 0.23 0.16 0.37
TFS-~1,1! 0.37 0.07 1.1 0.06 0.06 0.39 0.23 0.16 0.35
TFS-~2,2! 0.32 0.08 1.3 0.10 0.07 0.50 0.18 0.15 0.36
TFS-~R,1! 0.37 0.06 1.3 0.16 0.05 0.60 0.27 0.12 0.42
GC(nx) 0.37 0.07 1.2 0.13 0.06 0.27 0.20 0.20 0.40

aNumbers in bold indicate the method with the lowest error for each column. See text for a complete discussion.
bTo obtain the overall mean error, each column was normalized to have a mean value of 0.46, which is the average value of all unsigned errors i
Then the eight columns for a given method were averaged.

cAverage of the 12 unsigned errors from all four YRH PEMs~0.20, 0.10, 0.03, and 0.01! at all three sets of initial conditions.
dAverage unsigned error from the three MXH PEMs~SB, SL, and WL! at the~1.10, 0! set of initial conditions.
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The method with the lowest unsigned error is listed in bo
If another semiclassical method has an uncertainty that o
laps that of the best method, that method is also listed
bold.

Mean unsigned errors~MUEs! were calculated for the
TFS-~2, 1!, TFS-~1, 1!, TFS-~2, 2!, TFS-~R, 1!, and
GC(nx) semiclassical methods for the YRH systems by
eraging over the 12 cases studied here~four YRH PEMs and
three sets of initial conditions! and are presented in Table II
Table IV shows the MUEs for five semiclassical methods
the MXH systems, averaged over the three MXH PEMs.
each column, the method with the smallest MUE is indica
with bold font. By adding and subtracting the uncertainty
the observable from the nominal values, we obtain an up
and a lower bound on the value of the observables. We
then compute an upper bound on the MUEs by calcula
the MUE using either the upper or lower value of each o
servable, whichever results in the greatest error. A low
bound on the MUE can be calculated in a similar way. Tak
together, these values were used to determine if the me
with the lowest MUE is statistically different from the othe
methods. If the method with the lowest MUE has an unc
tainty in its MUE that overlaps with the uncertainty in th
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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MUE of one or more of the other methods, then each met
with overlapping MUEs is also listed in bold in Table III.

Table IV evaluates the semiclassical methods in a diff
ent way; in particular, it presents ‘‘scorecards’’ for the fiv
semiclassical methods that we applied to all 15 cases.
each of the observables, a point is given to the method w
the lowest absolute error~or absolute error of the logarithm
for the probabilities! for each PEM and set of initial condi
tions. If the best method has an error with an uncertainty t
overlaps one or more of the other semiclassical metho
each of the winning methods receives a point. Table V su
marizes the data in Tables III and IV.

VI. DISCUSSION

The term ‘‘classically forbidden’’ can have a variety o
meanings in a technical sense, but it is nevertheless us
and easily understood as a label for certain kinds of eve
Consider, e.g., the expansion of the electronic wave func
C given in Eq.~2!. At the start of the simulation, the syste
is in a pure state, i.e.,cx(t50) is a Kronecker delta,dx2 . It
would be reasonable to say that a hop down is classic
forbidden wheneveruc1(t5`)u2 is less than1

2. With this
TABLE IV. Scorecard for the semiclassical methods summed over 12 YRH cases~four potential energy matrices and three sets of initial conditions! and three
MHX cases~three potential energy matrices and one set of initial conditions!.

System Method log10PR ^n8& ^ j 8& log10PQ ^n9& ^ j 9& FR log10PN Probabilitiesa Momentsb

YRHc TFS-~2,1! 3 4 7 6 1 2 2 4 15 14
TFS-~1,1! 1 9 11 6 8 8 0 7 14 36
TFS-~2,2! 5 4 8 2 0 3 9 6 22 15
TFS-~R,1! 9 9 7 8 5 5 0 8 25 26
GC(nx) 3 9 8 5 5 3 3 4 15 25

MXHd TFS-~2,1! 0 3 2 0 1 1 0 0 0 7
TFS-~1,1! 0 2 2 2 2 1 0 0 2 7
TFS-~2,2! 2 2 1 0 1 0 2 0 4 4
TFS-~R,1! 0 3 0 0 1 0 0 3 3 4
GC(nx) 1 2 1 1 1 3 2 0 4 7

aSum of the four probabilities columns.
bSum of four moments columns.
cTwelve cases: four YRH PEMs~0.20, 0.10, 0.03, and 0.01! at three sets of initial conditions.
dThree cases: MXH PEMs~SB, SL, and WL! at the~1.10, 0! set of initial conditions.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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definition, electronic transitions are classically forbidden
nearly every one of the more than 12 mil trajectories cal
lated for the YRH systems in the present study. In fact, l
than 0.1% of trajectories for YRH~0.20! and YRH~0.10! have
values ofuc1(t5`)u2. 1

2, and the maximum value ofuc1(t
5`)u2 is 0.12 and 0.10 for YRH~0.03! and YRH~0.01!, re-
spectively. One may therefore expect semiclassical meth
to fail for systems with weakly coupled electronic states.
find, however, that the semiclassical methods tested here
vide reasonably accurate results, although the results
somewhat sensitive to the treatment of frustrated hops.

The weakly coupled nature of the electronic states of
YRH PEMs requires a large number of trajectories in or
to generate good statistics. The number of trajectories c
puted for each simulation is included in the supporti
information42 and varies from 5000 to 500 000. Each traje
tory takes about 1.2 s of computer time on an IBM SP
percomputer with 375 MHz Power 3 WinterHawk1 proces-
sors, and it is worthwhile to note that for these weak
coupled systems, the fully converged quantum mechan
calculations~with our unique, highly optimized compute
program! are less expensive than some of the well conver
~with respect to the number of trajectories! semiclassical tra-
jectory methods. Nevertheless, trajectory methods rem
more easily programmable and affordable for large syste
where accurate quantum dynamics become prohibitive, s
is important to test the reliability of the semiclassical me
ods.

The TFS-~2, 1! method systematically overestimat
the reaction and quenching probabilities for weakly coup
systems.@This is also true for the TFS-~2, 2! and TFS-~1,
1! methods. However, the choice of the ‘‘1’’ or ‘‘ 2’’ pro-

TABLE V. Overall summary including both YRH and MXH systems.

Pointsa
Normalized mean
unsigned errorb

Probabilities
TFS-~2,1! 3.8 0.46
TFS-~1,1! 5.5 0.43
TFS-~2,2! 9.5 0.42
TFS-~R,1! 9.2 0.48
GC(nx) 7.8 0.51

Moments
TFS-~2,1! 10.5 0.50
TFS-~1,1! 16.0 0.39
TFS-~2,2! 7.8 0.52
TFS-~R,1! 10.5 0.45
GC(nx) 13.2 0.43

Probabilities and moments
TFS-~2,1! 14.3 0.48
TFS-~1,1! 21.5 0.41
TFS-~2,2! 17.3 0.47
TFS-~R,1! 19.7 0.46
GC(nx) 21.0 0.47

aFrom Table IV with YRH and MXH weighted equally, specifically:
1
4 YRH

points1 MXH points.
bFirst, each column in Table III was normalized to have an average valu
0.46. Averages were then computed over the four probabilities, the
moments, or all eight observables with the YRH and MXH surfac
weighted equally.
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tocol is not important to the discussion in this and the n
several paragraphs, and only the TFS-~2, 1! method will be
discussed.# We can explain the trend inPR andPQ by noting
that in the 12 YRH cases studied here, 25%–80% of
TFS-~2, 1! trajectories that finish the simulation on th
lower electronic surface experience at least one frustra
hopping attempt. Trajectories that experience frustrated h
ping attempts are trapped in the ground electronic state, le
ing to values ofPR and PQ that are greater than the valu
demanded by the fewest-switches algorithm. We can e
mate a lower limit on the TFS transition probabilities b
considering only those trajectories that do not experience
frustrated hops. This is accomplished by the TFS-AF
method. The TFS-~2, 1! result, the TFS-AFH result, and th
quantum mechanical result for the reaction and quench
probabilities for the~1.10, 0! initial conditions are plotted in
Fig. 3. For all four of the PEMs, the quantum mechanic
transition probabilities are bracketed by the TFS-~2, 1! and
TFS-AFH results. For~1.10, 6! and ~1.02, 0!, this trend is
observed for three of the four PEMs. The total nonadiaba
probability PN , which was defined above asPR1PQ , is
bracketed by the TFS-~2, 1! result and the TFS-AFH resul
for all four PEMs in the YRH family and all three sets o
initial conditions.

For the YRH systems, the likelihood that a trajecto
will hop to the ground state twice is approximately equal
PN

2 , which is in most cases negligible compared toPN .
~Note that this is not true for the more strongly coupl
MXH systems where multiple hopping trajectories are
important part of the nonadiabatic dynamics.! Therefore, for
weakly coupled systems, the TFS-AFH result is not merel
lower limit on the TFS transition probabilities; the TFS-AF
result is approximately the result that would be obtained
every frustrated hopping attempt called for by the TFS al

of
ur
s

FIG. 3. Reaction and quenching probabilities for the four YRH PEMs a
for the initial conditions~1.10, 0!. The thick line represents the accura
quantum mechanical results. The solid line with symbols and error b
represents the TFS-~2,1! result. The dashed line with symbols and err
bars represents the TFS-AFH result, i.e., the results for absorbing frust
hops onto the upper surface. Note that both axes are logarithmic.
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rithm were allowed to occur. The fact that neither the TF
~2, 1! method nor the TFS-AFH method is accurate for t
weakly coupled YRH systems motivates the search repo
in this paper for a modification to the TFS method that
lows some frustrated hops and removes~or ignores! others.

We note that the model YRH systems provide a dram
example of the role that frustrated hopping plays in the s
sitivity of TSH calculations to the choice of electronic re
resentation. As previously mentioned, all of the semiclass
calculations reported in this paper were carried out in
adiabatic representation, except when noted otherwise.
model YRH~0.20! system and the initial conditions~1.10, 0!,
TFS-~2, 1! calculations carried out in the diabatic represe
tation @called the TFS-~2, 1!-di method# predict reaction
probabilities ten times greater and quenching probabili
four times greater than those predicted by the adiabatic T
~2, 1! calculations. We note that;97% of trajectories tha
finish the simulation in the lower diabatic state experience
least one frustrated hopping attempt, and that the quan
mechanical reaction and quenching probabilities~which are
invariant to the choice of electronic representation! are
bracketed by the TFS-~2, 1!-di and the TFS-AFH-di meth-
ods, just as they are for the adiabatic results. We will
discuss the diabatic calculations further.

The symmetrized probability methods that weight t
surfaces by1

2 significantly overestimate the reaction an
quenching probabilities for the weakly coupled model YR
systems. We have previously discussed how frustrated h
ping causes the TFS-~2, 1! method to overestimatePN .
The symmetrized methods eliminate frustrated hopping,
do so in a way that increases the probability of transitions
lower-energy states and decreases the probability of tra
tions from lower-energy states to higher-energy states. T
can be seen from Eqs.~9!–~16!. For any of the symmetrized
methods,bkl8 will be greater than the value ofbkl for the
TFS-~Prot-L, Prot-E! methods given by Eq.~5! whenever the
trajectory is in the higher-energy electronic state, andbkl8 will
always be less thanbkl when the trajectory is in the lower
energy electronic state.

The more physicalnx-weighted methods have muc
lower errors in the probabilities than the1

2-weighted methods
For the YRH systems,n1'0 andn2'1, so the value ofbkl8
is nearly equal tobkl when the trajectory is in the higher
energy electronic state. The value ofbkl8 is not equal tobkl

when the trajectory is in the lower-electronic state, but m
tiple hopping trajectories are not important in determini
the dynamics of the YRH systems. Therefore the value ofbkl8
after a hop down to the lower-energy state is only import
in determining whether or not the trajectory will experience
frustrated hop. In thenx-weighted methods, frustrated hop
are eliminated, which has the same effect on the final obs
ables as ignoring the frustrated hops, and thenx-weighted
methods give similar results to the TFS-~1, 1! method. The
total nonadiabatic probability is systematically slight
higher than the TFS-~1, 1! method due to the consideration
discussed above for the12-weighted methods. Table III show
that the GC(nx) method~which is, overall, the most accurat
of the symmetrized methods tested here! predicts less accu
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rate values forPN than any of the TFS-~Prot-L, Prot-E!
methods.

It should also be noted that the symmetrized meth
cannot be used in the diabatic representation because
diabatic coupling is not a function of the velocity of th
classical trajectory. We also note that the functions presen
in Eqs. ~9!–~16! are not smooth functions, i.e., they hav
discontinuous first derivatives. This arises from the fact t
while the trajectory is traveling on a single electronic su
face, Eqs.~9!–~16! are functions of the velocity~or speed! of
the trajectory on both electronic states. This speed for
unoccupied state does not correspond to a physical path
trajectory traveling on the unoccupied electronic surface.
example, if on the occupied surface the trajectory exp
ences a turning point in one of its modes, the velocity in t
mode will decrease, pass through zero, and increase f
zero with a different sign. The velocity computed for th
unoccupied surface will also switch signs, but it will n
necessarily go through zero, resulting in discontinuities
the velocity in that mode and its derivative. These discon
nuities can affect the efficiency of the trajectory calculati
if the equations forakl are integrated with an algorithm tha
requires smooth derivatives.

We will now turn our attention to the TFS-~2, 1!, TFS-
~1, 1!, TFS-~2, 2!, and TFS-~R, 1! methods. The treat-
ment of frustrated hops can have a significant effect on
final observables. The effect is greater for the wea
coupled YRH systems than for the more strongly coup
MXH systems, where multiple hopping trajectories are i
portant. In general, the TFS-~1, 1! method predicts the mos
accurate moments, the TFS-~2, 2! method predicts the mos
accurate values ofFR , and the TFS-~R, 1! method predicts
the most accurate values ofPN .

Reflecting the nuclear momentum alongd during a frus-
trated hop leads to increased error in the final moments
decreased error in the product branching ratio. We can
plain the trend inFR by noting that for the~1.10, 0! and
~1.02, 0! sets of initial conditions, the reaction probabilityPR

for the TFS-~2, 2! method is usually less thanPR calculated
by the TFS-~1, 1! method, whereas the total nonadiaba
probability PN is relatively unchanged. The upper electron
state in the reactive arrangement is energetically inac
sible, leading to a large number of trajectories that exp
ence energy forbidden hops as they are exiting this arran
ment. In the TFS-~1, 1! method, these frustrated hops a
ignored, and the trajectories finish in the reactive arran
ment. In the TFS-~2, 2! method, trajectories with frustrate
hopping attempts in this region are reflected in the direct
of d, which has a large component parallel to the react
channel. This causes some trajectories to be reflected
into the interaction region, lowering the value ofPR for the
TFS-~2, 2! method. For the~1.10, 6! set of initial condi-
tions, the increased energy in the rotational modes lead
an increased number of momentum-forbidden hops in
quenching product arrangement. These trajectories are
flected back into the interaction region in the TFS-~2, 2!
method, lowering the value ofPQ relative to the TFS-~1, 1!
method. For all three sets of initial conditions, reflection
trajectories with frustrated hops back into the interaction
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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gion improves the agreement of the semiclassical value
FR with the quantum mechanical result. However, the refl
tion alongd also leads to increased errors in the final m
ments.

It is reasonable, therefore, to consider methods that c
bine the ‘‘1’’ and the ‘‘2’’ protocols, such as the TFS-~2,
1! method. We have previously mentioned, however, t
energy-forbidden and momentum-forbidden hops should
treated consistently. Our results indicate that the TFS-~2, 1!
method is not the best strategy for combining the two refl
tion protocols, and it leads to less accurate final moments
the product branching ratios than either the TFS-~1, 1!
method or the TFS-~2, 2! method. It should also be note
that thed direction may not be the best direction in which
reflect the nuclear momentum during a frustrated hopp
attempt when applying the ‘‘2’’ protocol.

We can draw a similar conclusion about the TFS-~R, 1!
method. The TFS-~R, 1! method predicts the best values f
the total nonadiabatic probabilityPN . We can explain this
for the YRH systems by observing that the quantum m
chanical data lie between the TFS-~2, 1! and the TFS-AFH
data, as shown in Fig. 3. The TFS-~R, 1! method allows a
subset of frustrated trajectories~namely those trajectorie
with momentum-frustrated hops! to occur, improving the
agreement of the semiclassical value ofPN with the quantum
mechanical result. We note, however, that because the p
ability of hopping to the ground state twice is small, t
trajectories that hop to the upper electronic state using
rotatedd vector do not significantly affect the final reactio
or quenching moments. In other systems where multiple h
ping trajectories are important, the rotated hopping vec
has a larger effect on the final moments, as observed
previous study12 and in the present study for the rotation
moments of the more strongly coupled MXH systems.

Although it would be desirable for Tables III–V to sho
a clearly superior method, it is evident that a semiclass
method that successfully solves the problem of classic
forbidden hops must be more sophisticated than the sim
methods tested in this paper. We can, however, use the
sults of the present systematic study to suggest severa
portant features that a method likely must have in orde
successfully treat frustrated hops:~1! Some, but not all, frus-
trated trajectories should be reflected.~2! Some, but not all,
frustrated hops should somehow be allowed to hop to
upper electronic state.~3! The criterion for reflection and the
criterion for allowing classically forbidden hops should n
be based on the partition of energy in modes orthogonal td,
i.e., energy-forbidden and momentum-forbidden hops sho
be treated consistently.~4! The use of symmetrized speed
coupling functions in the expression for the hopping pro
ability systematically leads to increased reaction and quen
ing probabilities and thereby to worse agreement with ac
rate calculations; hence these methods are not recommen

The choice of ‘‘best method’’ depends on the observa
of interest, specifically: the TFS-~1, 1! method performs
best when calculating the final vibrational and rotational m
ments, the TFS-~2, 2! method gives the best value for th
reactive/nonreactive branching ratioFR , and the TFS-~R, 1!
method gives the best electronically nonadiabatic transi
Downloaded 13 Jul 2001 to 160.94.96.169. Redistribution subject to AI
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probabilities. Although there is no method that is the b
method for all observables, we see from Table V that, av
aged over all observables, the TFS-~1, 1! method is the
most accurate of the semiclassical methods for mode
weakly coupled systems, where classically forbidden h
are a serious problem.

VII. CONCLUSIONS

We have presented fully converged quantum mechan
scattering calculations for four weakly coupled three-ato
two-state systems. The systems are fully three-dimensio
and realistic. The systems are specifically designed to
weakly coupled systems where the frustrated hopping pr
lem is most serious; if one is to make a recommendat
about the best way to treat frustrated hopping, it is m
appropriate to make that decision on the basis of study
systems where the various choices have the most signifi
impact on the results, i.e., systems where classically forb
den hops are an essential part of the problem.

We tested the TFS~Tully’s fewest-switches! surface hop-
ping method with three different sets of initial conditions f
each of the four YRH PEMs, as well as with one set of init
conditions for a more strongly coupled set of three MX
PEMs. We have shown that for weakly coupled systems,
TFS method systematically overestimates the reaction
quenching probabilities due to the frequent occurrence
classically forbidden hopping attempts. We have explo
several variants of the TFS method which differ in the
treatment of frustrated hopping and have shown that
treatment of frustrated hopping has a large effect on the fi
nonadiabatic transition probabilities and the final vibration
and rotational moments. The effect of frustrated hops w
shown here to be critically important for the correct tre
ment of systems with weakly coupled electronic states,
we know from previous work12,14 and additional studies pre
sented here that the treatment of frustrated hops is also
nificant for more strongly coupled systems.

The TFS-~R, 1! method is shown to predict the be
total nonadiabatic probabilities. The TFS-~1, 1! scheme,
which ignores all types of frustrated hops, predicts the b
final vibrational and rotational moments, and the TFS-~2, 2!
method predicts the best product branching ratios. Avera
over all observables, the TFS-~1, 1! method is the best o
the semiclassical methods tested here. Although there i
method that completely solves the problem of classica
frustrated hops, we have motivated the search for a m
sophisticated protocol for the treatment of frustrated ho
and we have inferred several features that a succes
method is likely to have.

We also tested eight symmetrized velocity and coupl
methods. These methods were shown to be extremely
suited for modeling the dynamics of weakly coupled syste
when the coupling contributions from both surfaces we
weighted equally. Weighting using the electronic state po
lations significantly increased the accuracy of the meth
and the results of the best symmetrized method are o
slightly less accurate, on the average, as those obtained u
the best nonsymmetrized coupling method. However,
symmetrized methods are specialized to the adiabatic re
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sentation, systematically increase the nonadiabatic trans
probabilities, and can cause numerical difficulties in th
implementation.

Although a major goal of this work was the comparis
of various strategies for dealing with the frustrated hopp
problem, we should not lose sight~in consideringrelative
accuracy of the methods! of an important conclusion abou
absoluteaccuracy of multidimensional semiclassical me
ods in general for weakly coupled systems. This is the m
extensive test ever carried out~superceding Ref. 13! for
weakly coupled multidimensional semiclassical nonadiab
methods for three-body collisions in full three-dimension
space, featuring new quantum mechanical results and
12 mil trajectories. The accurate quantal values of the pr
ability PN of a nonadiabatic event~averaged over energ
intervals of 0.06 eV! range from 331025 to 131021, or, on
a logarithmic scale, log10PN ranges from24.5 to21.0. And
yet the five semiclassical methods that were applied to al
cases have mean unsigned errors in log10PN that range from
0.09 to 0.15~corresponding to typical errors of only abo
30%!. Thus semiclassical methods are remarkably accu
even in these highly nonclassical weakly coupled syste
This provides strong confirmation of the value of past d
tailed studies of these methods, and it also validates their
for applications. Furthermore, it motivates the continui
search for further refining these methods so that other asp
of the results, for example, the probabilities of nonadiaba
reaction, may become equally accurate.
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APPENDIX: EHRENFEST METHOD

Although this paper is primarily concerned with stud
ing the treatment of frustrated hopping in trajectory surfa
hopping calculations, we also tested the semiclassical Eh
fest method39,40 for all four YRH systems and all three se
of initial conditions, for a total of 12 cases. In the semicla
sical Ehrenfest method, trajectories are propagated o
mixed potential energy surface which is a linear combinat
of the adiabatic surfaces weighted by the quantum mech
cal state populations. The semiclassical Ehrenfest me
predicts no reaction because mixing in even a small amo
of the upper surface prohibits the system from reaching
product. However, we can still test the method forPQ , ^n9&,
^ j 9&, andPN .

Semiclassical Ehrenfest~SE! trajectories finish the simu
lation in a mixed stated in the Y1RH arrangement. The fina
state electronic state populationsn1 andn2 are used to assign
electronic probability density to the upper and lower s
faces. Here we test three different methods for assigning
electronic probability. In the SE-H method, the trajectory
assigned to the closest electronic surface. For the YRH~0.20!
system, a small set of trajectories finish with an1.0.5. For
the other PEMs, the SE-H method predicts zero quench
probability. The SE-LSS method assigns a weight ofn1 to
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the quenching probability. This method has errors com
rable to the TFS methods for the quenching and total no
diabatic probabilities and the final moments. The SE-Q
method assigns a weight ofn1

2 to the quenching probability if
n1,n2 ~which is usually the case! and a weight of 12n2

2 if
n1.n2 . The results of the SE-QSS method are intermed
of the SE-LSS and the SE-H methods. Table VI gives MU
of the semiclassical Ehrenfest methods.
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